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Abstract

This paper studies a general class of two-dimensional systems of the cubic nonlinear
Schr6dinger type (2DNLS), defined by iOtq + 01q = pq and 0 2P = 03(q'q), where each

0O, = --'i --,5 , n = 1,2,3, is a linear, second-order, operator with constant coefficients.
This class generalizes the Djordjevic-Redekopp (DR) system, which has previously been
encountered in the context of water waves. Integrability is characterized sin-ply in terms
of covariant conditions on the O0,. We obtain all inLgrable cases, including the known
cases Davey-Stewartson I and II as well as other known integrable cases. The 2DNLS is
modulationally stable if V) 1)V( 2)V) 3 ) > 0 Vk, where V ()= ki.-kD7). All other regimes
are modulationally unstable and have projections satisfying the ordinary (1D) NLS with
soliton solutions, though in all known cases these 1D solitons are unstable with respect to
transverse perturbations. The self-focusing regime is characterized by the eigenvalues of
the Dif(;)" 01 and 02 must both be elliptic, and for that choice of variables for which Dý1 )

and both have positive signature, D!) must have at least one negative eigenvalue. The
self-focusing regime is distinct from the modulationally stable regime and also from the
integrable regime, while the integrable cases may be modulationally stable or unstable.
There are no soliton solutions known in those integrable cases that are modulationally
stable, whereas those integrable cases in which 2D solitons are known correspond to the
modulational instability regime.

... . .. . . I

I J"1By

1t



1. Motivation

Reduction of nonlinear physical problems to systems of evolution equations with

known properties has proven to be quite fruitful in recent years. Though a comprehensive

bibliography is beyond the scope of the present paper, the flavor of such computations

may be seen in our own work on (1+1)-dimensional "intense propagation" problems as
they arise in plasma physics (see Kates & Kaup 1989a,b; 1991; 1992a; 1992b and refer-
ences cited therein) and cosmology (Kates & Kaup 1988). Useful examples may also be

found in a series of papers on the "reductive perturbation method" (Ichikawa et al., 1976;

Taniuti, 1974). Considering the wide variety of applications, even modest improvement

in our understanding of the resulting nonlinear evolution equations could be of enormous
value.

If nonlinear effects are not too strong, and if symmetry permits the assumption of
dependence on only one spatial coordinate, then the essential features of a nonlinear pulse

propagation problem may often be deduced from the well-known properties of the one-
dimensional nonlinear Schrodinger equation (NLS)

iqt + q. ± Iqlq= (1)

In the reduction of a complicated 1D system to the NLS, the most important computation
is the dependence of the sign in (1) on the parameters of the problem: The minus sign

indicates modulational stability, while the plus sign indicates modulational instability and
soliton solutions.

In this paper, we investigate the qualitatively much richer range of phenomena asso-

ciated with "2D" instabilities arising in nonlinear pulse propagation. That is, we consider
the evolution of nonlinear instabilities having functional dependence on (2+1) dimensions
(two spatial dimensions and time).

An important area of application concerns 2D modulations of electromagnetic pulses.
Since Eq. (1) governs 1D modulations of weakly relativistic EM pulses, one might have
supposed that 2D modulations of EM waves could be described simply by replacing the
ID dispersion term q., in the NLS (1) with a 2D dispersion term:

iqt + [Dz z12 + 2D 3v8,81 + Dy82]q ±-Iq Jq2 q = 0 (2a)

where 82w
Dij = Ok2 (2b)

A system of the form (2) is indeed obtained for a circularly polarized beam if longitudi-
nal perturbations are negligible (Spatschek, 1977). This case corresponds to the "thin-
beam" approximation. However in many applications both longitudinal and transverse
perturbations may occur. Careful analysis of fluid modes associated with longitudinal and

transverse ponderomotive forces (Kates & Kaup, 1993) shows that a proper description of
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2D modulations of EM puses then involves two independent, coupled potential functions.
This point was recognized by Karpman (1990).

Some hints as to generic 2D behavior are provided by water waves (Djordjevic &
Redekopp, 1977 (DR in what follows); Ablowitz & Segur, 1979 ("A&S" in what follows)):
Capillary-gravity waves are described by the "DR" system, which (for historical reasons)
is expressed in the form

iA, + AAt + pA,7, = xA*A2 + XjA4t (3a)

a4¢ + 0,7,7 = -O(A*A)t . (3b)

Both (1) and (2) are special cases of (3): If the initial data depend only on ý or 71 or
some linear combination thereof, the DR system (3) may be reduced to the 1D nonlinear
Schrbdinger equation (1). By properly choosing the coordinates, one may write (2) in the
DR form (3), in which case X1 = 0, so that the potentials are decoupled. Eq. (2) Ur
equivalently (3a) with X, = 0 will be refered to below as the "decoupled 2DNLS."

As written, the DR system (3) contains six "arbitrary" constants: a, 3, A\ , X, and
X1. (However, by suitable coordinate transformations, one can reduce the dimensionality
of this parameter space to two parameters and two signs, as is occasionally convenient.)
Since a rather large class of 2D systems with cubic nonlinearity can be reduced to DR form,
it represents an important advance in generalizing the NLS to two dimensions# However,
as discussed below, the DR system still does not include all possible 2D generalizations of
the NLS. Indeed, it does not contain all possible 2DNLS integrable cases. Moreover, in
practice, reduction of a given system to the DR form (3) may require a tedioul search for
appropriate coordinate transformations. These considerations already suffice to motivate
our introduction of a more general, covariant form (Section 2), which seems to deserve the
designation "canonical." This canonical form includes a much wider class of 2D general-
izations of the NLS and also facilitates a comprehensive treatment of :1l integrable forms
of the 2DNLS. The importance of this form was first noted by Zakharov anci Schulman
(1990).

In Section 3, we compute the regimes of modulational instability for the generic
2DNLS. More precisely, we study perturbations about spatially constant, bui nonlinear
solutions. Modulational instability of the 2DNLS is always associated with the existence
of one-dimensional NLS soliton solutions. Whether such 1D solitons truly arise in a system
depending on two spatial coordinates is of course a separate question.

The canonical form turns out to be of great benefit in understanding self-focusing.
Self-focusing has been studied for those regions of the DR parameter space accessible to
water wave systems: A&S showed that a singularity in moment of inertia occurs in their
"region F," characterized by X1, 0,, a, p, and A positive, X, and v X- X, - I/a negative in
Eqs. (3). They also studied quasi-self-similar solutions in this region, obtaining growing
solutions consistent with a self-focusing interpretation. The question of self-focusing in
their "Region E" (XI, /, a, u, A, X, and v all positive) was left open. (Incidentally, the
A&S paper contains a few minor misprints: The quantity A2 given in their coordinate
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transformations should read JAJ throughout. In their Eq. (4.1d), X3 should be replaced by

However, several intended applications to experiments in plasma physics and nonlinear
optics require at the very least a knowledge of self-focusing conditions for the entire range
of DR parameters (not just the region of DR parameter space accessible to water waves).
For example, the interesting question of self-focusing for positive X and negative v did
not arise in the A&S paper, because for water waves v and X have the same sign. Other
applications may require self-focusing results for systems that cannot be reduced to DR
form but that can be put into our canonical 2DNLS form: for example, (Kates & Kaup,
1992b) the Zakharov equations (Zakharov, 1972).

In Section 4, we derive self-focusing conditions for the general 2DNLS in terms of
the signatures of three operators. As a consequence we will be able to answer the open
question referred to by A&S concerning the possibility of self-focusing for their "region E"
in the negative. On the other hand, self-focusing is possible for positive X and negative v
(assuming the other parameters are positive).

2. Canonical Form for the 2DNLS and Integrability

Of particular interest for applications such as multi-dimensional plasma phenomena is
the question of whether parameters can be chosen such that the system is integrable. In this
case the system may have nontrivial soliton solutions. In this section, we discuss a general
canonical form for two-dimensional generalizations of the NLS ("2DNLS"). Conditions for
integrability are most simply and conveniently expressed in terms of this canonical form
instead of the DR form.

We begin our discussion by observing that if both eigenvalues of Dij have the same
sign as the nonlinear term, then we may rescale the decoupled NLS (2) to

i.tq + V2 q + q 2q =- 0 (4)

In two dimensions, Eq. (4) is of considerable interest in its own right, because it exhibits
self-focusing behavior (Synakh, 1975; Spatschek, 1977). Eq. (4) would appear to be the
"simplest" possible multi-dimensional generalization of (1) in any number of dimensions;
if the 1D version of a physical system obeys the NLS (1), then it sometimes happens that
the multi-dimensional version can be reduced to (4). However, its properties are quite
different: In more than one dimension, Eq. (4) is not integrable.

All known integrable forms of the multidimensional NLS involve an auxiliary function.
Such a function arises naturally in the physics of water waves (DR), in the Zakharov system
(see below) and in electromagnetic pulses propagation (Kates and Kaup, 1992b).

Recently, Boiti, Pimpinefli and Sabatier (1992) demonstrated that there are only three
distinct integrable forms of a 2DNLS. Below, we will show that all three may be expressed
compactly in terms of the "canonical" form (Zakharov and Schulman, 1990)
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iOtq + O~q = pq (5a)

0 2 p = 0 3 (q*q) , (5b)

where each of the operators O,, in (5) is a second-order linear, symmetric (dispersion)
operator of the form

on = D( )8 + 2D(n)z,9y, + D( .)92 (5c)

The criteria for integrability of (5) now become simply that at least one of 02 and 03 not
be elliptic,

= KD(3 (6a)

be satisfied for some constant K,

SDý?)[(D(3))-I]•) = 0 , (6b)

and
det(D(n)) 0 0 (6c)

for each of n = 1, 2,3. Thus, expressing the system in the canonical form (5) offers the
advantage of allowing a straightforward, coordinate-independent test of integrability.

Note that whenever det(D(n)) = 0, then D('n) is simply a projection. Thus condition
(6c) ensures that each On remains two-dimensional. Condition (6b) means that in some
sense, the operator 02 must be orthogonal to 03 (and naturally also to 01).

We now relate conditions (6) to the integrability conditions of Boiti, Pimpinelli and
Sabatier (1992): Using powerful analytical techniques, they showed that, in multiple di-
mensions, the only possible integrable equations having at most two derivatives are ob-
tainable from a Lax pair of the following form:

82 vi = qv2 (7a)

C1 v2 = rv, (7b)

iOtvI = alca2v +ib 18v, + cl5,' - dvi + elv 2  (8a)

iOtV2 = a282V2 + ib2O'v 2 + c 2 01vI + d2vl + e2v2  (8b)

where 81 = /cOwl; 68 = 0/19w 2; w1 and w2 are independent spatial variables; v, and v2

are eigenfunctions; a, and a2 are constants; and bl, b2 , cl, c2 , dl, d2 , el and e2 are functions
to be determined. Eqs. (7) constitute a scattering problem which was first studied by
Ablowitz and Haberman (1975). For given q and r, particular scattering data are deter-
mined. Conversely, given the scattering data, one can reconstruct the potentials, q and
r.
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The Lax pair (7) and (8) can only have a common solution when certain integrability
conditions are satisfied. These integrability conditions yield precisely the integrable forms
of the 2DNLS detailed by Boiti, Pimpinelli and Sabatier (1992). One obtains them by
cross-differentiating (7) and (8), using (7) and (8) to simplify the resulting conditions.
One finds

C= a 2q (9a)

C2 air (9b)

o2bl =0 (9c)

81b2 = 0 (9d)

el = iqb2 - a0q (9e)

d2 = irb, - o,01r (9f)

and the evolution equations

i(Ot - bi0i - b202)q =(rA'O a2092)q + (di - e2 + ioý2•)q (10a)

-49t- bl - b2 02)r = (o -o 2- )r + (d, - e2- ilb)r , (10b)

where the potentials d, and e2 are determined by

02d= = -2a 18 1 (rq) (Ila)

(1e2 = -2a 2 82 (rq) (llb)

The quantities b, and b2 are trivial, being simply a group velocity for the q and r fields.
Thus we take them to be zero. Now, if we identify

r = aoq* , (12)

where a0 - ±1, then the two equations (10) are obviously equivalent. Defining

p=dl -e 2 , (13)

we then have from (11)

10'2P = -2o0(aoid• - aO282)(q"q) (14a)

and (10a) becomes

i0tq = (oal11 - o2,0)q + pq (14b)
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Lastly, if we define

02 = 0102 (15a)

03 = -2ao( I0• - 02012) (15b)

01 = (o0`1, - 02 92) , (15c)

the system takes the canonical form (5) and satisfies the conditions given in (6). Conversely,
conditions (6) are invariant under general linear coordinate transformations as well as under
constant rescalings of the dependent variables. This invariance simplifies considerably the
problem of determining when an equation of the form (5) is integrable. One does not have
to search for special coordinate scalings. One simply checks whether or not conditions
(6) hold in some coordinate system. When (6) are satisfied, then one can always find
coordinates such that the O,, are given by (15).

Let us now make some remarks on this canonical form. First, there is an arbitrariness
in the choice of signs of w, and/or W2. By using this, we could absorb the sign a0 into
either w, or w2 . Note that (7) would be transformed if the sign of co is so absorbed.
However, it is convenient to carry a0 in the computation and leave the coordinates fixed.
Furthermore, the dispersion operator 02 is not necessarily restricted to be hyperbolic, as
it may appear at first glance. When the dispersion operator 02 is hyperbolic, then it is
only necessary to choose the coordinates w, and w2 to be real. Then in order to obtain
real operators 03 and 01, one would choose al and 02 real. In this case, 03 and 01 may
be either elliptic or hyperbolic, depending on the signs chosen for a, and a2.

However, suppose the actual problem demands 02 to be elliptic. One may also treat
this case by allowing w, and w2 to be complex. (In the above derivation, 01 and 02
were only required to be linear operators. They quite easily could have been a linear
combination of derivatives of real coordinates with complex coefficients as below.) The
simplest example is to take

01 = +, + i0u (16a)

=0. - i0 ,(16b)

where x and y are real coordinates. Now the dispersion operators all have to be real for
physical reasons, so care has to be taken to ensure that this remains so when w, and w2

are complex. The condition that 03 (and 01) be real requires a2 = -a,, so that only one
of a, and 02 may be chosen arbitrarily. One may show that for 02 elliptic, 03 (and 01)
must be hyperbolic. This is in contrast to the case 02 hyperbolic, in which 03 (and 01)
could be either elliptic or hyperbolic. Also, one may verify that this does not affect the
choice (12), which remains a valid identification.

This case of 02 elliptic contains the case of the classical Davey-Stewartson equation
(which has been called the "Davey-Stewartson II") in hydrodynamics. We refer the reader
to the literature [Kaup (1980), Fokas and Ablowitz (1983), Fokas and Ablowitz (1984),
Boiti, Leon, Martina and Pempineli (1988), Boiti, Leon and Pempinelli (1989), Boiti,
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Pempinelli and Sabatier (1992), Arl idiev, Pogrebkov and Polibanov (1989)] for the solution
of the initial value problems and various specific solutions.

Now, an important point in regard to this canonical system is that any system which
can be expressed in the DR form (3) can also be expressed in the canonical form (5). (The
converse is not always true.) The transformation can be easily obtained by differentiating
(3b) with respect to ý and making the identifications

o5 = +(17a)
X1 X 2

02 = x 92 + -N (I 17a)

X1 7 Xi

01 = + AX8 (17c)

q = A (17d)

p = x(A*A) + XiO8 P (17e)

(Note that x corresponds to 71 and y to ý. The"decoupled" case of vanishing X, is excluded.)

The so-called Davey-Stewartson I equations (DS-I)

-+Q, 1 (Q. + QwY) + Q(¢Y ± Q*Q) (18a)

(0.. - Oyv) ± 2(QQ*)y = 0 (18b)

and DS-II equations (for the upper sign)

-iQ- = 1 (Q• _ QYY) - Q(¢Y ± Q*Q) (19a)
2

(Cq. + O•) :± 2(QQ*)• = 0 (19b)

are the integrable cases of DR.

Conditions for integrability of a system expressed in the DR form (3) may be obtained
by the following tedious procedure: one introduces constant transformations to normal-
ize all but two of the coefficients in (3). Inspection of the resulting equations reveals
that reduction to Eqs. (18) (DS-I) requires positive A and satisfaction of two additional
conditions:

P3 pX = -2x,\ (20a)

and
(20b)

If A is negative, the DR system (3) reduces to Eqs. (19) (DS-II) if X is positive and (20)
hold. Applying (6) to the operators 0,, defined in Eqs. (17a-c), one sees that the conditions
for integrability are consistent with those given in (20) for the DR form.
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The "standard" forms (18) and (19) for DS-1 and DS-1I appear to distinguish a direc-
tion of propagation (longitudinal coordinate) from a transverse coordinate, whereas there
is no such distinction in (5). Now, of course such a distinction may be defined in the
underlying problem, but it is not inherent in the DS equations themselves, since one can
easily transform either DS system to (14).

In some cases, we can reverse the procedure and convert (14) to DR form. However,
we emphasize that not all integrable cases can be expressed in DR form: Suppose that a
transformation exists such that p can be decomposed into

p = xq q + (nlO + n202 )$ , (21a)

where X is a coupling constant and (n1 081 + n2 Gý) is the gradient in some "transverse"
direction. From (14a), one then must obtain the equation for 0 in the form

01oa-, = 2-y(n,81 + n2 0'2)(q'q) , (21b)

where -y is simply a sign. One finds that this can be done whenever the following conditions
can be satisfied:

a, = -,yn 1
2  (22a)

"2 = yn2 ,(22b)

where X will then be given by
X = -4"ynin2 (23)

When 02 is elliptic, then since o2 = -a,*, a solution will always exist for the ni's
where n2 = nj *, leading to a real transverse gradient operator, (n 1 91 + n 202) (recall here
that the partials are complex operators). However, in the case where 02 is hyperbolic and
the coordinates w, and w2 are real, from (22) it is clear that a solution exists only if 03 is
elliptic (DS-I). When in addition 03 is hyperbolic, then no real solution can exist for nj
and n2 , i.e., at least one of the direction cosines would have to be complex. Consequently
the DR form is not a canonical form covering all possible integrable cases. In particular,
it cannot cover the case where both 02 and 03 are hyperbolic. For this reason, the form
(5) is preferable, because it does cover all integrable cases.

3. Modulational Instability of the 2DNLS

As in the one-dimensional NLS (1), important hints to the asymptotic behavior of
solutions of the generic 2DNLS (5) can be obtained by studying modulational stability
following the method of Paper III. We first observe that (5) admits spatially constant
solutions of the form p = P0 = const, q = qo(t), where Po and q0 are any solutions of

iOtqo = poqo , (24)

9



for example,
qo = exp (ipot) (25)

We next write
p = p(1 +pi) (26a)

q = qo( + q1) (26b)

(where q, and Pi depend on all variables) and linearize Eqs. (5) in pi and qi, obtaining

iitql + O1q, - pop1 = 0 (27a)

-i~tq* + O1 q[ -pop, = 0 (27b)

0 2P] = q0qqO 3(qo + qo) (27c)
Po

Expressing the dependent variables qj, ql*, and p, as Fourier integrals and being careful
to include the possibility that the time dependence of the phase may be complex, we then

obtain the dispersion relation

^/)(3)*

U2 =_-)(1) + 2z__qoqo] (28)

where D(') is defined by

u(') exp(ik.- -) = -O exp(i/k. ) (29a)

that is,

V(-) =..tj.n!) (29b)

Let us assume that V( 2) is nonvanishing. Since it can be shown that higher wavenumbers
are stabilizing, we obtain the condition

p(l) )(2) )(3) > 0 VJZT (30)

for modulational stability of the general canonical system (5).

One important application of (30) concerns one-dimensional subspaces (see also Dis-

cussion): For any fired k, we can define y = k. i and substitute p = p(t, y) and q = q(t, y)
into (5). Assuming nonvanishing V , (5b) can easily be integrated twice, and p can be

eliminated form (5a), resulting in a different one-dimensional NLS (1) for each k. It is then
easy to verify that (30) yields the correct NLS modulational stability condition. Additional
consequences will be discussed in the final section.

It is especially interesting to combine (30) with the integrability conditions (6): these

imply
D(3 , (31)
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and thus
rV11) > 0 (32)

is the condition for modulational stability of an integrable 2DNLS system. Consequences
will be discussed in the final section.

Although the above derivation already covers the DR form (3) in principle (via Eqs.
(17)), for future reference we repeat the argument explicitly for the DR form (3): The
spatially constant solution for A is

Ao(r) = ao exp (-ix-rao) (33)

with -o = 0. We take
a = Ao(I+ a ,, )) ,(34)

and linearize (3) in a, and 4. The dispersion relation is then

= k2 (A sin 2 (0) + Y cos 2(0))[(A sin 2 (0) + Pcos2 (0))k 2 + 2a0 2a23x 1 sin 2 (e)cos2 (0) + a sin 2(9)]

(35)
where k, = k cos(0), kc = k sin(0), i.e., k2 = k + ki. Since evidently higher wavenumbers
k are stabilizing, the maximal instability region may be determined by considering the
limit k -, 0 of -y2/k 2 . The resulting inequality reduces properly in the limiting cases 0 = 0
and 0 = 7r/2 to the known conditions for modulational instability of the "longitudinal"
and "transverse" NLS. It is also is of great utility in understanding the changes in the
qualitative behavior of solutions of the DR system for limiting values of the coefficients.

Finally, we note that the zeroth-order solution (33), which was assumed spatially
constant, may be generalized to an arbitrary plane wave by Galilean invariance without
changing the regimes of modulational stability.

4. Self-focusing

Probably the most dramatic difference between ID and 2D modulations is the possi-
bility of a violent "self-focusing" singularity (Zakharov & Synakh, 1975; Spatschek, 1977).
Self-focusing is also a well-known phenomenon in nonlinear optics (Kelley, 1965). For the
general 2DNLS (5), which contains two independent potentials, the situation is a quite a
bit more complicated than for the decoupled 2DNLS (4), which involves only one potential.
Below, we derive restrictions on the operators O,, in (5) and give conditions on the initial
conditions leading to self-focusing.

We are interested in the time evolution of the generalized "moment of inertia" integral

J - //d'x E[(D(1))-1)jj xixjq'q (35)

ij1



We assume that 01 and 02. are elliptic and that all fields vanish at infinity sufficiently
rapidly in what follows (see end of this section for discussion). Without further loss of

generality, we take the matrix D.) to have two positive eigenvalues. Note that in the
absence of singularities J is a positive definite quantity. (This would not be true for
hyperbolic 01.) For our purposes, the question of self-focusing amounts to asking under
what circumstances J develops a singularity in finite time.

It may be verified (see Appendix A) under the above assumptions that

d 2 J-
-T =8/I , (36)

where

I, J/ d~d2 H1  (37a)

and
adH, =- 1:D. j'+I p*q (37b)113

ij2

If I, exists, is conserved, and is initially negative, then integration of (46) implies
that J will develop a singularity in finite time. Now, for arbitrary 0n, 1, is nt generally
conserved, even for diagonal 01 and 02 (i.e., the DR system). Nevertheless, ts we shall
now show, I, will be constant in time under the assumptions stated above.

Consider a ("generalized DR") system of the form

iAr + 0 1A = XA*A 2 + xiA')t (38a)

02) = -/(A*A)ý , (38b)

where 01 and 02 are as in (5). The DR form (3) corresponds to the special case of (38) in
which 01 and 02 are both diagonal. Our procedure will now be to write the 2DNLS (5)
in the form (38) and obtain conservation laws for I, in this form.

Let us write q
q-A A(39)

and
p=XA*A+P (40)

Eq. (5b) becomes

02P = (03 - X02)(A*A) (41)

Since 02 is elliptic, it can be shown (see following paragraph) that there exists a linear
transformation to coordinates r7, . such that

03 - Xo2 = -02 (42)

12



for some constant b, where
at nj ~j ,(43)

and where without loss of generality ii is a unit vector. Identifying

P = • ,t (44)

we can then integrate (41).

Now let us prove the above statement leading to (42): Since by assumption both
eigenvalues of D(2) are positive, we first transform it into the identity matrix by means
of a constant linear coordinate transformation. In the coordinate system (x1, X2 ), we thus
seek a solution of the matrix equation

D3)- Xjj + bnin, = 0 (45)

Eq. (45) is equivalent to three scalar equations. One of these, the trace of (45), yields an
expression for b:

b =-(D(') + D(')) + 2X (46)

Let nj = cos 0 and n2 = sin 0 for some 0. The remaining two scalar equations then yield

1 ( (3) (3) = (3) r(3)2 4 (3) )2]1/
x = 2 tD 11 + D22 D -[22 + 4(D )21/2 (47)

and r(3)

Cos 2 8 X1<1 . (48)D(3) (•3) _ -
11 + D2-

Therefore, under the stated assumptions we may always write the 2DNLS (5) in the form
(38).

In order to prove conservation of I,, it is convenient to define a Lagrangian density
for (38):

L= •(AA* - A*,A) - H(A,A*, t) (49)

where
H ~ ZDýAjA + 1 (AA' )2 +2 DF-'-- j , + XAA*1 . (50)

ij 223ij

Equations (38) are then equivalent to

j[JdrJff dCdr L] =0 , (51)

where independent variations are to be performed with respect to A*, A, and C. In
particular, (51) implies

d I0

dr 0 (52a)

13



where
I. J ~dqir 1 (52b)

ZFrom (38b) one obtains

Is -= -)•tD,tj ) + XI
I, ~J dýd& (EZDi)A 3 ±xJ d~ir A*Al~t0 (53)

Sij

Combining (52) and (53), we obtain the additional conservation law

d 13 =0 (54a)
dT

where

I 3 =J- kdTd H13 ,(54b)

H, DýJ)A-A! + 1X(AA*)2 + X-AA*4t (54c)
ij

3

On the other hand, substituting (40) and (44) into (37) and taking the special case X1 = 1,
we find that H1 = H3 . Therefore, 11 is conserved.

Let us now study conditions for negative I,: Since the first term in H, is positive
definite, self-focusing requires :

14 <0 (55a)

where

14 - d2x pqq. (55b)

A sufficient condition for (55a) is that 02 and 03 have opposite signatures: We first express
p and q*q as 2D Fourier integrals

p = d2k 'buk (56a)

q*q = d2k pgug , (56b)

where
1k exp(ik. - ) 7

7Tr (57)

We then have

1=Jfd2k ¢ . (58)
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Observing that (5b) is a linear equation in p and q'q, we can now solve for /'7, in terms
of pi using

D( 2)kkg = D(D)kkp- (59)

13 ij

The integrand in (58) is therefore negative definite if the signatures of 02 and 03 are
opposite, and therefore (55a) is satisfied as claimed.

For self-focusing, we are interested in initial data such that riot just 14, but also 11 is
negative. It is intuitively clear that this can always be accomplished if q is chosen to have
sufficiently large power at small k.

We observe that if the signatures of 02 and 03 are the same, then 14 is positive
definite. In this case, the system is clearly outside of the self-focusing regime as defined
by the prediction of a singularity in J. This is the case of "Region E" defined by A&S for
the DR system (3).

In the case of L. having one negative and one positive eigenvalue (hyperbolic 03),

Eq. (59) no longer guarantees opposite signs of ik and pi for arbitrary Tk. An example
is the case of positive X and negative v in (3) (other parameters positive) mentioned in
the introduction. Nevertheless, self-focusing can still occur if the initial conditions have
enough power at low wave number and also most of the power in q*q is concentrated in

modes with wave numbers k intersecting a hyperbola ) k -1 (i.e., in the notation

of (29a), modes satisfying V(3) < 0).

At the beginning of this section, we assumed that 01 and 02 are elliptic. Now, the
condition 01 elliptic obviously is needed to argue for a singularity in J (Eq. (35)). The
condition that 02 must be elliptic was derived for the DR system (3) by A&S, and their
arguments are simply repeated here for the 2DNLS (5): First, suppose one has initial data
for q which decays sufficiently rapidly at infinity or has compact support. Then partial
integration of global integrals involving only q and its derivatives leave no boundary terms.
If 02 is elliptic, then appropriate boundary conditions for (5b) are that p vanish at infinity,
so integration by parts of global integrals involving p also leaves no boundary terms. This
argument breaks down if 02 is hyperbolic, since boundary terms involving p do not in
general vanish at infinity.

Summarizing, for the self-focusing regime, the operators 02 and 01 in (6) must be
elliptic, while D(3) must have at least one negative eigenvalue (taking DM) and D(2) positive
definite).

5. Discussion

The canonical form (5) of the 2DNLS has proven to be quite useful in understanding
integrability, modulational instability and self-focusing. An overview is given in Table 1.
[For example, the entry "DSI" under "Integrability" in the sixth row of the table means
that for (01, 02, 03) = (elliptic, hyperbolic, elliptic), conditions (6) are equivalent to DSI.]
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We have obtained all of the integrable cases (see conditions (6) which also contain some
degenerate cases [Zakharov, 1980]). Eq. (32) is the condition for modulational stability
of an integrable system. Observe that the DS-I system, which is known to admit solitons,
is modulationally unstable, as one would have expected, while the DS-II system, which is
not known to admit solitons, is in fact modulationally stable (for K > 0). It thus seems
plausible that all integrable cases that do not give rise to solitons are in the modulationally
stable regime.

Recall that, for the self-focusing regime as we understand it here, the operators 02 and
O1 in (6) must be elliptic, while D(3) must have at least one negative eigenvalue (taking
D(2) and DM1 ) to have positive signature without loss of generality). Hence, the regimes
of self-focusing and modulational stability (30) are mutually exclusive. For applications to
practical experiments, it is especially interesting to compare (28), the dispersion relation
for modulational instability (arbitrary k), with the conditions for self-focusing (negativity
of I,; see (37)) in light of Eq. (59): In (28), higher wavenumbers are stabilizing, and in I,
too much power at high wavenumbers prevents self-focusing, even if 14 (see Eqs. (55) and
(58)) is negative.

In particular, for hyperbolic 03, self-focusing requires not only sufficient power at low
wavenumbers, but also that most of the power in q*q be concentrated in modes k such
that VD3 ) < 0 (in the notation of (29a)). These are just the unstable modes according to
(28).

Next, we observe that the conditions for integrability and those for self-focusing are
mutually ezclusive. Suppose the contrary: As stated above Eq. (6a), for integrability at
least one of 02 and 03 must not be elliptic. For self-focusing, 02 must be elliptic, so 03
would have to be hyperbolic. But then by (6a) 01 would also be hyperbolic, which violates
our conditions for self-focusing.

In Section 3, we saw that for any 1D subspace defined by y = k - Y (where k is any
direction such that 7)(2) does not vanish), the 2DNLS (5) may be reduced to Eq. (1),
the (ID) NLS. Modulational instabilities of the 2DNLS predicted by (30) are therefore
associated with ordinary NLS solitons. However, from the work of A&S we know at least
for the DR equations that all 1D solitons are unstable with respect to long-wavelength
perturbations in the remaining spatial coordinate if these perturbations are compatible
with the boundary conditions. An intriguing question for future work is thus whether
all 1D .olitons are unstable for the full 2DNLS (5) and, if so, what they evolve into.
Of special interest is the regime where all three operators are elliptic and D(3 ) has two
negative eigenvalues (taking DM1 ) and D(2) positive definite). This regime corresponds to
"Region F" of A&S in the DR case and is the most favorable for self-focusing. Begging
the reader's tolerance for pure speculation, we suggest that if "nearly 1D" solitons do form
and persist for some time in this regime, they may decay due to growth of long-wavelength
"transverse" perturbations and eventually develop self-focusing singularities.

It is also evident from (30) that a system which reduces to a modulationally stable
NLS in a ID subspace defined by y = k- Y may still be unstable in 2D. In particular, it
may self-focus or, if it happens to b.. integrable, form 2D solitons. This simple observation,
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together with the instability of 1D solitons discussed in the preceeding paragraph, poses a
severe limitation on the validity of conclusions drawn from a one-dimensional analysis of
any intrinsically multi-dimensional, NLS-type system.

Table 1: Self-Focussing, Modulational Stability,
and Integrability of 2DNLS (Eqs. (5))

01 02 03 Self- Modulational Integra-
focussing stability bility

H HH U YES/NO
H H E ? U/S NO
H E H ? U/S DSII/DSII'/'NO
H E E ? U NO
E HH U/S NO
E H E ? U DSI/NO

E E H YES U NO
E E E YES/NO U/S NO

H = hyperbolic, E=elliptic, U = unstable, S = stable

Where there is a choice, which case will occur will depend on the exact values of the
coefficients (see text).

DSI, DSII, etc.: (see text)
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Appendix A: Derivation of Eq. (42)

Consider the moment of inertia integral

J 11d2zZ [(D( )2Z],j x,x,q'q ((A1)
ij

We assume that 01 and 02 are elliptic, all fields vanish at infinity sufficiently rapidly, and
that q*q and p can be expressed as 2D Fourier integrals.

Eq. (5a) may be expressed in the form

iatq = W (A2a)

where
W = -0 +±p (A2b)

is Hermitian. Using (A2), one obtains

ddtJ _ 2i f f d2xq! -V -q-*" *Vq] - (A3)

Differentiating, one obtains

dt--f 2 j= jd 2. (-q *[?i i-.V]q +c.c.), (M4)

where [ , ] indicates the commutator of two operators. We note the commutation relations

1-01 ,i V] =-20, (A5)

and
[p ,i.V]-i. . (A6)

Partially integrating, one obtains

y = 8 d2x DQ)qjq -41 5  , (A7a)
dr2 ii

where

A d2xq q(i Vp) (A7b)

Let us write p, q*q, and :. Vp as 2D Fourier integrals

p = J d2k Om (A8)
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Y-.VP J d 2k Tj (M9)

qsq Jd2k pju , (A10)

where
u 1 2rexp(ik - i) (All)

15 then reduces to

15 = Jd2k %tjp (A12)

For simplicity, we drop the subscripts on u, %P, 0, and p in what follows. From (A9)
- (A10) one obtains

'I = -21- Z ki, (A13)Oki

Now, since 02 is elliptic, Eq. (5b) implies

S= Rp ,(Al4a)

where

R )(2)

and
V-) =- kikjD•) (A14c)

Using (A13) and (A14) and vigorously integrating by parts in k-space, one obtains

15 =-ffd2k Otpi (A15)

Inverting the Fourier transforms, one then has

Is = - f f d2. pq"q (A16)

Combining (A16) and (A7), one then obtains Eq. (42).

Note that ellipticity of 02 was essential to the argument. Otherwise, the quantity R
defined in (Al4b) would have been singular.
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